Just another site

Thought this was cool: Yann LeCun教授在ICML‘12 的keynote 视频和讲义

leave a comment »

Title: Learning Hierarchies of Invariant Features


Intelligent perceptual tasks such as vision and audition require the construction of good internal representations. Machine Learning has been very successful for producing classifiers, but the next big challenge for ML, computer vision, and computational neuroscience is to devise learning algorithms that can learn features and internal representations automatically.

Theoretical and empirical evidence suggest that the perceptual world is best represented by a multi-stage hierarchy in which features in successive stages are increasingly global, invariant, and abstract. An important question is to devise “” methods for multi-stage architecture than can automatically learn invariant feature hierarchies from labeled and unlabeled data.

A number of unsupervised methods for learning invariant features will be described that are based on sparse coding and sparse auto-encoders: convolutional sparse auto-encoders, invariance through group sparsity, invariance through lateral inhibition, and invariance through temporal constancy. The methods are used to pre-train convolutional networks (ConvNets). ConvNets are biologically-inspired architectures consisting of multiple stages of filter banks, interspersed with non-linear operations, spatial pooling, and contrast normalization operations.

Several applications will be shown through videos and live demos, including a a pedestrian detector, a category-level object recognition system that can be trained on the fly, and a system that can label every pixel in an image with the category of the object it belongs to (scene parsing).

Tags: , , ,

from 增强视觉 | 计算机视觉 增强现实:


Written by cwyalpha

九月 10, 2012 在 10:08 上午

发表在 Uncategorized


Fill in your details below or click an icon to log in: 徽标

You are commenting using your account. Log Out /  更改 )

Google+ photo

You are commenting using your Google+ account. Log Out /  更改 )

Twitter picture

You are commenting using your Twitter account. Log Out /  更改 )

Facebook photo

You are commenting using your Facebook account. Log Out /  更改 )


Connecting to %s

%d 博主赞过: